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A SIMPLE PROCEDURE FOR CONSTRUCTING SOLUTIONS
OF NONLINEAR HEAT-CONDUCTLON PROBLEMS BY THE
KANTOROVICH METHOD

G. N. Gusenkov and I, M. Chirkov UDC 536.24.02

A simplified procedure based on expansion in the neighborhood of an approximate solution is
discussed for solution of the quasilinear heat-conduction equation.

It is generally known that either the energy method or the more promising method of Galerkin [2] is
used in connection with the method of Kantorovich [1]. The crux of either approach is that in the solution of
nonlinear problems of mathematical physics one must inevitably cope with systems of nonlinear ordinary dif-
ferential equations and algebraic equations, a prospect that often incurs insurmountable difficulties and
naturally imposes limitations on practical applications. A vital problem in this connection is the search for
a procedure that can be used to construct solutions of nonlinear problems by reduction to ordinary differen-
tial equations without having to solve systems of nonlinear equations, at least in the stage of refinement of the
initial approximation,

Below we consider such a procedure for the quasilinear heat-conduction equation in three-dimensional
space and for a general type of nonlinear boundary-value problem. In addition to the requirements of exis-
tence and uniqueness of a solution, we impose constraints that are quite strong, but are nonetheless frequently
justified, as a rule, in a number of practical problems, as for example in the area of heat physics: 1) The
solution T (x, y, z, t) is representable with sufficient practical accuracy in some neighborhood of a certain
initial approximation T =T(x, y, z, t) by an equation in the form of a power series, finite or infinite, which
is differentiable with respect to the coordinates and time; 2) in the neighborhood of T = Tyx, ¥, z, t) the co-
efficients in the equation and in the boundary conditions are analytical functions of T,

Congider the equation

oT
[L(T) 5 =V tf(T) VT @)
subject to the boundary conditions on the surface s
F(T)VT + [ (7)), = 0. @)
In accordance with constraints 1) and 2) we represent T and the functions fj @ =1, 2, 3, 4) inthe form

T=oa,+ex+ ... ¢, @)
fi=filrer, + gf_ﬁ (T—TO)-'—. .o=B,; (€™ ). 4)

aT Ft 0 ki 'm

The "Einstein rule," i.e., summation with respect to a certain index, is tacitly understood at all times.

As the initial expression for o, we can take the solution given by, for example, the integral (3, 4] or any
other suitable method.

We substitute (3) and ) into (1) and (2), We obtain
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dat,

Bra (€70t ) €7 Py = v {By. (", ) ey} (5)
Bk!{ (sma'm)kspvap + Bh:} (emam)kls == 0» (6)
pk,n=0,1 2 ..., oo,
m=1,2, ... ,0.

-Equating coefficients of like.powers of &.on the right~ and left-hand sides of (5) and setting them equal to zero
.in (6), we obtain the following array of equations and corresponding boundary conditions:

pm + Buc 1 = V{Buve; + Buotva,); (7)
ﬁosval + 5140‘1‘7% + 5140‘1,5 =0; (8)
6&0 2 60&0
ﬁm + Brict + Buc 1 ‘i‘ Baiai = V{Bp2v % + Bra®aV 0ty + B,y + ﬁzzalvao} 9)
BoaV e + PraV ey + Brs vy + ﬁzao‘%V% + Buatts + ﬁu“?ls =0, : (10)

Equations (7) and (9) and their counterparts for other «; with the boundary conditions (8) and (10) are linear
and, hence, much simpler to solve than the original nonlinear problem (in particular, by the same technique
of reduction to ordinary differential equations). We are also aware [1] that the convergence of the variational
method of Kantorovich for linear systems is determined by the already proved [1, 2] convergence of the Ritz
method. Thus, if the series (3) turns out to be convergent, the solution constructed by the foregoing scheme
will converge to the exact solution, A similar statement applies to the case in which the method of Galerkin
is adopted as the direct method., It is sufficient for practical purposes, in light of the rapid convergence of
the corresponding series, to retain only the first (one or two) terms of the Kantorovich representations. The
same is true of the series (3).

As an illustration we consider the problem [5]
oT aT
= = vT) — 11
. [( +1n 2L ] )
T, t)=1; T(x, 0)=0
For small variations the system (11) can be used, for example, as a simplified version for analysis of the be-

havior of the baseline in the nonlinear theory of differential hot~wire anemometry for a constant specific heat
and linear temperature dependence of the thermal conductivity.

We limit the series (3) to the first three terms, We adopt as a the solution obtained by the integral
method

o2 x? —
a0=1~——6—+§—2; 8=V 12(1—9)% 12)

We seek @y and o, in accordance with the Kantorovich methal [1] as a series with respect to the relatively
complete system of functions yj:

L

o; = Ein (% ) ay; (1);
i=1

e = (6 —x) x*
i=1, 2,
which satisfy zero-valued boundary conditions; we stop with the first approximation, i.e.,
ay = (8 — ) xa,, 13)
ap = (6 — X) Xay. 14

We substitute (12)-(14) into (7) and (8), which we then insert into the functional
J(e) = (Lo, a)—(f; a) — (o, [i);

a a
Lal:ﬁ_—‘{(l‘*"\’“o) +'\’1;:l;
j
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du, 0 { Jaty da
Loy = =2 — — (1 + 9%) =2 + 90—} ; 15)
= =k — oo+ v S+ e ax} (

;] de
f1=0; f,= ——{val 'L‘} .
ox

Ox

Forming the Euler equations from (15) and using zero-valued initial conditions, we obtain
35—99
o = @ —n 7.

3

233y
30—y —!t“‘mfi—’ 1% (8 — x).

TR
As a result, the approximate solution of the nonlinear problem (11) has the form
. 2 _ R Ll _ __23=3y
SR SR S 1 P i Gk [P "-’“-‘”}. 16)
ViZd—y)f  12(1—y) ¢ 4 | _ 2 - 5y

The values of T calculated according to (16) for, say, ¥ = 0.1 and various values of x and t differ from the
corresponding exact solutions [5] only in the third place.

We note that the same result can be obtained more simply if the Galerkin method is taken as the direct
one,

NOTATION

X, V¥, z, coordinates; t, time; &, small parameter; «, coefficients in expansion of solution T into
power series in g; fj, coefficients in starting equation and boundary conditions; B, coefficients in expansion
of f into series in €; ykj, basis functions; ayj, unknown functions in the Kantorovich representation; v,
constant coefficient.
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